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The effect of the presence of the single transverse crack on the response of the rotor has
been a focus of attention for many researchers. In the present work a simple Jeffcott rotor
with two transverse surface cracks has been studied. The stiffness of such a rotor is derived
based on the concepts of fracture mechanics. Subsequently, the effect of the interaction of
the two cracks on the breathing behavior and on the unbalance response of the rotor is
studied. When the angular orientation of one crack relative to the other is varied,
significant changes in the dynamic response of the rotor are noticed. A special case of
practical importance of a two-crack rotor is one when one of the cracks is assumed to
remain open always whereas the other can breathe like a fatigue crack. This simulates a
transverse crack in an asymmetric rotor. Effect of orientation of the breathing crack with
respect to the open crack on the dynamic response is studied in detail. The results of the
present study will be useful in diagnosing fatigue cracks in real rotors, which invariably
have some asymmetry.

# 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

Fatigue cracks because of their potential to cause catastrophic failures are a grave threat
to an uninterrupted operation and performance of the modern day machines. Since mid-
1970 various researchers have studied the response of a cracked rotor. The work on the
diagnosis of crack has been mainly based on vibration signature. The changes in the
vibration response in the form of changes of frequency composition or a rising trend of
higher harmonics of rotational frequency or an increased level of subharmonic resonances
have been found to be some of the important crack indicators. These vibration-based
techniques have been applied to a variety of engineering structures, such as beams, trusses,
rotors, etc. The research in the past few decades on cracked structures and rotors is well
documented in review papers by Wauer [1] and Dimarogonas [2].
The thrust of most of the works in the past has been on a structure with a single

transverse surface crack. When more than one crack appears in a structure, the dynamic
response becomes more complex depending upon the relative positions and depths of these
cracks. Moreover various combinations of position and depth can lead to the identical
changes in the natural frequencies. Various investigators have recently addressed the effect
of two surface cracks on the vibration response of structures. Ostachowicz and Krawczuk
[3] analyzed the effect of positions and depths of two cracks on the natural frequency of
cantilever beams. Shen and Pierre [4] considered a pair of symmetric cracks at mid-span
and focussed their attention on the effect of these cracks on the mode shapes. Both the
Galerkin procedure and the finite element approach have been used. Effect of crack depth
and location on the eigenfrequencies of a double cracked beam has also been studied [5].
022-460X/02/$35.00 # 2002 Elsevier Science Ltd. All rights reserved.
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A review based on the work related to multiple cracked structures is presented by Ruotolo
and Surace [6]. Development of generalized damage identification procedures for systems
with multiple cracks based on optimization [7] and genetic algorithm [8] has received
considerable attention recently.
The problem of two cracks in a rotor has not been dealt with in detail until now.

Recently, Sekhar [9] carried out a parametric study of two transverse open cracks in a
rotor and studied the effect of various crack parameters on the eigenfrequencies and
stability speeds of rotors. He used finite element model of a rotor bearing system for
flexural vibrations and carried out a study on two aligned open cracks.
In the present study the dynamic response analysis of two-crack rotor is carried out. A

simple Jeffcott rotor with two transverse surface cracks is considered. A more realistic
breathing crack model is used as against the open crack model applied in earlier studies.
The cracks are assumed at some distance apart near the mid-span. The stiffness of the
Jeffcott rotor due to the presence of these cracks is derived based on fracture mechanics
concepts. Then the dynamic response of the cracked Jeffcott rotor is obtained for an
unbalance excitation. The effects of orientation of one crack relative to the other on the
unbalance response and on the breathing behaviour of the two cracks are studied. A
special case of the two-crack rotor is when one of the cracks is of open type while the other
can breathe during the rotation of rotor. This simulates an asymmetric rotor with a fatigue
crack. This case is studied in detail to estimate the effect of the presence of fatigue crack on
the response of an asymmetric rotor. Such a study of an asymmetric shaft having a
transverse crack has not been attempted. The only related work is by Lees and Friswell
[10]. They discussed the effect of chordal cracks on the mode shapes of asymmetric rotors
and also studied the effect of orientation of the rotor on various modes of vibration.
In the following section the stiffness of a two-crack Jeffcott rotor is derived. Then in

section 3, unbalance response of the two-crack rotor is studied for various speeds and
orientation angle between two cracks. Section 4 discusses the response of an asymmetric
rotor with a breathing transverse crack. The important findings of the present work are
summarized in section 5.

2. STRIFFNESS OF A TWO-CRACK ROTOR

Consider a Jeffcott rotor that has two transverse surface cracks with one oriented from
the other at an angle of g as shown in Figure 1. The cracks assumed to be some distance
apart axially so as not to influence the stress fields of one another, but assumed close
enough to be located at midspan.
Here an attempt is made to find the flexibility of a cracked Jeffcott rotor with two

transverse surface cracks oriented in rotor-fixed directions x1 and x2 are shown in Figure 1.
Co-ordinate system for crack 1 is x12Z1 and that for crack 2 is x22Z2; the orientation
angle between them being g: Qx1 and QZ1 are the forces on the rotor in x12Z1 co-ordinates
at the center of the span of the rotor where the two cracks are situated. In x22Z2 co-
ordinates these forces are denoted by Qx2 and QZ2 : They are related as follows:

Qx2

QZ2

( )
¼

cos g sin g

�sin g cos g

" #
Qx1

QZ1

( )
: ð1Þ

The cracks open and close during a rotation, i.e., they breathe under the influence of
gravity and unbalance forces acting on the crack cross-section. The flexibility of the
cracked rotor is a function of the amount of crack opening of both these cracks. Thus the
flexibility of the two-crack rotor is constantly changing. The amount of crack opening for
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Figure 1. Details of a two-crack Jeffcott rotor. (a) Co-ordinate system. (b) Details of a crack cross-section.
(c) Forces acting on the rotor at the crack cross-sections.
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each crack depends on the stresses acting on the crack edge. The stress intensity factor (KI
1 )

on the crack is given below [11, 12]:

KI
1 ¼ KI

Qx1
þ KI

QZ1
: ð2Þ

Here

KI
Qx1

¼ sx1
ffiffiffiffiffiffi
pa

p
F ; sx1 ¼

Qx1L

4

� �
a0

2

I
; KI

Qx1
¼ Qx1La

0

8I

ffiffiffiffiffiffi
pa

p
F ð3Þ
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and

KI
QZ1

¼ sZ1
ffiffiffiffiffiffi
pa

p
F 0; sZ1 ¼

QZ1L

4

� �
w

I
; KI

QZ1
¼ QZ1Lw

4I

ffiffiffiffiffiffi
pa

p
F 0; ð4Þ

where I ¼ ðp=64Þd4 and functions F and F 0; which depend on crack parameters a and a0;
are given as under

F ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2a0

pa
tan

pa
2a0

� 	r
0�923þ 0�199 1� sin pa

2a0

� 	h i4
cos

pa
2a0

� 	 ;

F 0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2a0

pa0
tan

pa
2a0

� 	r
0�752þ 2�02 a

a0

� 	
þ 0�37 1� sin pa

2a0

� 	h i3
cos

pa
2a0

� 	 : ð5Þ

From fracture mechanics, the additional deflection due to the presence of crack in x12Z1
co-ordinates is

ui1 ¼
@

@Qi1

Z
J1ðaÞ da

� �
; ð6Þ

where strain energy density function is given as

J1ðaÞ ¼
1

E
½KI

Qx1
þ KI

QZ1

2: ð7Þ

Substituting equation (7) in equation (6) and using relation (3) and (4), we get

ux1 ¼
2

E

Z Z
A1

Qx1La
0 ffiffiffiffiffiffi

pa
p

F

8I
þ QZ1Lw

4I

ffiffiffiffiffiffi
pa

p
F 0

� �
La0

ffiffiffiffiffiffi
pa

p
F

8I
da dw; ð8Þ

uZ1 ¼
2

E

Z Z
A1

Qx1La
0 ffiffiffiffiffiffi

pa
p

F

8I
þ QZ1Lw

4I

ffiffiffiffiffiffi
pa

p
F 0

� �
Lw

ffiffiffiffiffiffi
pa

p
F 0

4I
da dw: ð9Þ

Similarly additional deflection in x22Z2 co-ordinate for crack 2 can be shown to be

ux2 ¼
2

E

Z Z
A2

Qx2La
0 ffiffiffiffiffiffi

pa
p

F

8I
þ QZ2Lw

4I

ffiffiffiffiffiffi
pa

p
F 0

� �
La0

ffiffiffiffiffiffi
pa

p
F

8I
da dw; ð10Þ

uZ2 ¼
2

E

Z Z
A2

Qx2La
0 ffiffiffiffiffiffi

pa
p

F

8I
þ QZ2Lw

4I

ffiffiffiffiffiffi
pa

p
F 0

� �
Lw

ffiffiffiffiffiffi
pa

p
F 0

4I
da dw: ð11Þ

In equations (8)–(11), the areas of integration A1 and A2 denote the open part of the cracks
1 and 2 respectively.
Using equation (1), the above displacements in terms of forces acting on crack 1 are

ux2 ¼
2

E

Z Z
A2

ðQx1 cos gþ QZ1 sin gÞLa0
ffiffiffiffiffiffi
pa

p
F

8I

��

þ ð�Qx1 sin gþ QZ1 cos gÞLw
ffiffiffiffiffiffi
pa

p
F 0

4I

��
La0

ffiffiffiffiffiffi
pa

p
F

8I
da dw

¼ 2

E

Z Z
A2

L2a02paF2

64I2
cos g� L2a0wpaFF 0

32I2
sin g

� �
Qx1

�

þ L2a02paF 2

64I2
sin gþ L2wa0paFF 0

32I2
cos g

� �
QZ1

�
da dw; ð12Þ
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uZ2 ¼
2

E

Z Z
A2

ðQx1 cos gþ QZ1 sin gÞLa0
ffiffiffiffiffiffi
pa

p
F

8I

��

þ ðQZ1 cos g� Qx1 sin gÞLw
ffiffiffiffiffiffi
pa

p
F 0

4I

��
Lw

ffiffiffiffiffiffi
pa

p
F 0

4I
da dw

¼ 2

E

Z Z
A2

L2a0wpaFF 0

32I2
cos g� L2w2paF 02

16I2
sin g

� �
Qx1

�

þ L2a02paFF 0

32I2
sin gþ L2w2paF 02

16I2
cos g

� �
QZ1

�
da dw: ð13Þ

Deflections in direction x1 is written as

#uux1 ¼ ux1 þ ux2 cos g� uZ2 sin gþ u0x1 : ð14Þ

Here, ux1 is the deflection due to crack 1 in the direction x1; ux2 the deflection due to crack 2
in the direction x2; uZ2 the deflection due to crack 2 in the direction Z2; and u0x1 the
deflection of uncracked shaft in the x1 direction:

u0x1 ¼
Qx1L

3

48EI
: ð15Þ

Using equations (8), (12), (13) and (15), equation (14) can be written as

#uux1 ¼
2

E

Z Z
A1

Qx1La
0 ffiffiffiffiffiffi

pa
p

F

8I
þ QZ1Lw

4I

ffiffiffiffiffiffi
pa

p
F 0

� �
La0

ffiffiffiffiffiffi
pa

p
F

8I
da dw

þ 2

E

Z Z
A2

L2a02paF 2

64I2
cos g� L2a0wpaFF 0

32I2
sin g

� �
Qx1þ

L2a02paF 2

64I2
sin gþ L2a0wpaFF 0

32I2
cos g

� �
QZ1

2
6664

3
7775 cos g da dw

� 2

E

Z Z
A2

L2a0wpaFF 0

32I2
cos g� L2w2paF 02

16I2
sin g

� �
Qx1þ

L2a0wpaFF 0

32I2
sin gþ L2w2paF 02

16I2
cos g

� �
QZ1

2
6664

3
7775 sin g da dw þ Qx1L3

48EI
: ð16Þ

Similarly for direction Z1

#uuZ1 ¼ uZ1 þ ux2 sin gþ uZ2 cos gþ u0Z1 : ð17Þ

Here, uZ1 is the deflection due to crack 1 in direction Z1; ux2 the deflection due to crack 2 in
direction x2; uZ2 the deflection due to crack 2 in direction Z2; and u0Z1 the deflection of
uncracked shaft in Z1 direction:

u0Z1 ¼
QZ1L

3

48EI
: ð18Þ
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Using equations (9), (12), (13) and (18), equation (17) can be written as

#uuZ1 ¼
2

E

Z Z
A1

Qx1La
0 ffiffiffiffiffiffi

pa
p

F

8I
þ QZ1Lw

4I

ffiffiffiffiffiffi
pa

p
F 0

� �
Lw

ffiffiffiffiffiffi
pa

p
F 0

4I
da dw

þ 2

E

Z Z
A2

L2a02paF 2

64I2
cos g� L2a0wpaFF 0

32I2
sin g

� �
Qx1þ

L2a02paF 2

64I2
sin gþ L2a0wpaFF 0

32I2
cos g

� �
QZ1

2
6664

3
7775 sin g da dw

þ 2

E

Z Z
A2

L2a0wpaFF 0

32I2
cos g� L2w2paF 02

16I2
sin g

� �
Qx1þ

L2a0wpaFF 0

32I2
sin gþ L2w2paF 02

16I2
cos g

� �
QZ1

2
6664

3
7775 cos g da dw þ QZ1L

3

48EI
: ð19Þ

The direct and cross-coupled flexibility values gx; gZ; gxZ; gZx can now be found as
follows:

gx ¼
@ #uux1

@Qx1
:

From equation (16), we have

gx ¼
2

E

Z
A1

L2a02paF 2

64I2
da dw

� �

þ 2

E

Z Z
A2

L2a02paF2

64I2
cos2 g� L2a0wpaFF 0

32I2
sin g cos g

� �
da dw

� 2

E

Z Z
A2

L2a0wpaFF 0

32I2
sin g cos g� L2w2paF 02

16I2
sin2 g

� �
da dw þ L3

48EI
ð20Þ

and

gxZ ¼
@ #uux1

@QZ1
;

gxZ ¼
2

E

Z
A1

L2wa0paFF 0

32I2
da dw

� �

þ 2

E

Z Z
A2

L2a02paF2

64I2
sin g cos gþ L2a0wpaFF 0

32I2
cos2 g

� �
da dw

� 2

E

Z Z
A2

L2a0wpaFF 0

32I2
sin2 gþ L2w2paF 02

16I2
sin g cos g

� �
da dw; ð21Þ

gZ ¼
@ #uuZ1

@QZ1
;

so from equation (19), we have

gZ ¼
2

E

Z
A1

L2w2paF 02

16I2
da dw

� �

þ 2

E

Z Z
A2

L2a02paF 2

64I2
sin2 gþ L2a0wpaFF 0

32I2
sin g cos g

� �
da dw

� 2

E

Z Z
A2

L2a0wpaFF 0

32I2
sin g cos gþ L2w2paF 02

16I2
cos2 g

� �
da dw þ L3

48EI
: ð22Þ
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Also,

gZx ¼
@ #uuZ1

@Qx1
;

and it can be shown that

gxZ ¼ gZx: ð23Þ
The equations for flexibility (equations (20)–(23)) are rewritten as follows:

gx ¼
pL2

32EI2

Z Z
A1

a02aF2 da dw þ pL2 cos2 g
32EI2

Z Z
A2

a02aF 2 da dw

� pL2 sin g cos g
16EI2

Z Z
A2

a02waFF 0 da dw � pL2 sin g cos g
16EI2

Z Z
A2

a0waFF 0 da dw

þ pL2 sin2 g
8EI2

Z Z
A2

w2aF 02 da dw þ L3

48EI
ð24Þ

and

gZ ¼
pL2

8EI2

Z Z
A1

w2aF 02 da dw þ pL2 sin2 g
32EI2

Z Z
A2

a02aF2 da dw

þ pL2 sin g cos g
16EI2

Z Z
A2

wa0aFF 0 da dw þ pL2 sin g cos g
16EI2

Z Z
A2

wa0aFF 0 da dw

þ pL2 cos2 g
8EI2

Z Z
A2

w2aF 02 da dw þ L3

48EI
; ð25Þ

gxZ ¼ gZx ¼
pL2

16EI2

Z Z
A1

wa0aFF 0 da dw þ pL2 sin g cos g
32EI2

Z Z
A2

a02aF 2 da dw

þ pL2 cos2 g
16EI2

Z Z
A2

wa0aFF 0 da dw � pL2 sin2 g
16EI2

Z Z
A2

wa0aFF 0 da dw

� pL2 sin g cos g
8EI2

Z Z
A2

w2aF 02 da dw: ð26Þ

These can be further written as

gx ¼
pL2

32EI2
I 0g1 þ

pL2 cos2 g
32EI2

I 00g1 �
pL2 sin g cos g

8EI2
I 00g2 þ

pL2 sin2 g
8EI2

I 00g3 þ
L3

48EI
; ð27Þ

gZ ¼
pL2

32EI2
I 0g2 þ

pL2 sin2 g
32EI2

I 00g1 þ
pL2 sin g cos g

8EI2
I 00g2 �

pL2 cos2 g
8EI2

I 00g3 þ
L3

48EI
; ð28Þ

gxZ ¼
pL2

16EI2
I 0g3 þ

pL2 sin g cos g
32EI2

I 00g1 �
pL2ðcos2 g� sin2 gÞ

16EI2
I 00g2 þ

pL2 sin g cos g
8EI2

I 00g3; ð29Þ

where

I 0g1 ¼
Z Z

A1

a02aF2 da dw; I 0g2 ¼
Z Z

A1

w2aF 02 da dw; I 0g3 ¼
Z Z

A1

wa0aFF 0 da dw;

I 00g1 ¼
Z Z

A2

a02aF2 da dw; I 00g2 ¼
Z Z

A2

wa0aFF 0 da dw; I 00g3 ¼
Z Z

A2

w2aF 02 da dw: ð30Þ

It may be noted that for g ¼ 08; the above expressions reduce to flexibility expressions
similar to those given by June et al. [11]. The stiffness coefficients can now be
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obtained as

kZ ¼
gx

gxgZ � g2xZ
; kxZ ¼ kZx ¼

�gxZ

gxgZ � g2xZ
; kx ¼

gZ

gxgZ � g2xZ
: ð31Þ

Using these stiffness coefficients the equation of motion can be written as [13]

mð.xx1 � 2o’ZZ1 � o2x1Þ þ cð’xx1 � oZ1Þ þ kxx1 þ kxZZ1 ¼ meo2 cos b� mg cos y;

mð.ZZ1 � 2o’xx1 � o2Z1Þ þ cð’ZZ1 � ox1Þ þ kZxx1 þ kZZ1 ¼ meo2 sin b� mg sin y: ð32Þ

The response obtained using these equations can be used to estimate the forces on the
crack cross-section as follows:

Qx1

QZ1

( )
¼

kx kxZ

kZx kZ

" #
x1
Z1

( )
: ð33Þ

Using these forces the SIF, i.e., the stress intensity factor (K1) for crack 1 can be found
from equations (2)–(4) as given below:

KI
1 ¼

Qx1La
0 ffiffiffiffiffiffi

pa
p

F

8I
þ QZ1Lw

ffiffiffiffiffiffi
pa

p
F 0

4I
: ð34Þ

The sign of (KI
1 ) at different positions along the crack edge would indicate the open and

closed area of crack 1. Positions where the sign is positive correspond to open area of the
crack represented by A1: This enables setting up the limits of integration for crack area A1:
These limits involve both the width and height of the cracked area. Similarly, the
forces obtained from equation (33) can be used to estimate the forces Qx2 and QZ2 acting
on crack 2, by using equation (1). Then the SIF on the edge of crack 2 is determined as
follows:

KI
2 ¼

Qx2La
0 ffiffiffiffiffiffi

pa
p

F

8I
þ QZ2Lw

ffiffiffiffiffiffi
pa

p
F 0

4I
: ð35Þ

The sign of SIF KI
2 at various locations on crack 2 indicates open/closed area of crack 2,

which helps in setting limits of integration wherever A2 is involved.
Equation (32) can be non-dimensionalized using the following parameters:

%xx ¼ x1
dst

; %ZZ ¼ Z1
dst

; z ¼ c

2
ffiffiffiffiffiffiffiffiffi
k0m

p ; t ¼ ot; e ¼ 2
dst

; %aa1 ¼
a1

D
; %aa2 ¼

a2

D
: ð36aÞ

Also, the following frequency ratios are defined:

r0 ¼
o0
o
; rx ¼

ox

o
; rZ ¼

oZ

o
; runb ¼ o

o0
; rxZ ¼

oxZ

o
; rZx ¼

oZx

o
;

where

o0 ¼
ffiffiffiffiffi
k0

m

r
; ox ¼

ffiffiffiffiffi
kx

m

r
; oZ ¼

ffiffiffiffiffi
kZ

m

r
; oxZoZx ¼

ffiffiffiffiffiffiffi
kxZ

m

r
: ð36bÞ

Hence, the equations of motion in non-dimensional form are

.%xxþ 2Br0
’%xþ 2 ’%ZZþ ðr2x � 1Þ%xxþ ðr2xZ � 2Br0Þ%ZZ ¼ e cos b� r20 cos t;

.%Z%Zþ 2Br0
’%Z%Zþ 2’%xx%xxþ ðr2Z � 1Þ%ZZþ ðr2Zx þ 2Br0Þ%xx ¼ e sin bþ r20 sin t: ð37Þ

A program has been written in MATLAB1 (version 5.3) to estimate the response of a
two-crack rotor. The solution process for solving the above equations of motion is



 

Evaluate forces on rotor near crack (Eq.33,1) 

Evaluate SIFs on the crack edges (Eq.34,35) 

Estimate stiffness (Eq.37) 

Estimate response using above stiffness
in equation of motion (Eq. 37) 

Difference in the estimated
response for this rotation and for
previous cycle within tolerance? 

Yes 

STOP

Yes
No 

START 

Initial displacement 
and Stiffness 

θ=0 

Increment time 
      t=t+∆t 

t < tone degree? 

Increment rotor rotation by one degree 
 = +1  

θ < 360 ? 

t=0 

Yes

No 

Figure 2. Flowchart showing the procedure of solution of equations of motion.
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iterative and is detailed in Figure 2. The initial displacement is assumed equal to the static
deflection of the uncracked rotor and initial stiffness values correspond to that of the
uncracked rotor. Using these initial displacements and stiffness, the program evaluates
forces (Qx and QZ) on both the crack cross-sections with the help of equations (33) and (1).
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Then using these forces and equations (34) and (35), SIF at 50 points along the crack edge
of both the cracks are evaluated. Positive SIF values indicate the amount of open part of
the crack. This in turn decides the limits of integration for equations (30) since only the
open part of the crack is taken into account for finding the additional flexibility due to the
cracks. The flexibility values are calculated from equations (27)–(29) which give stiffnesses
using equation (31). Then, equation (37) is integrated using fourth order Runge–Kutta
procedure using the initial assumed response and stiffnesses. Stiffnesses are assumed to be
constant for one degree of rotation (p=180 radian), for which the integration of equation
(37) is carried out with a sufficiently small time step (Dt ¼ 0�00001445 s). The response
obtained at the end of one degree of rotation is stored and again used to re-evaluate forces
using equation (33). These forces are used to evaluate the SIF and the next set of stiffness
values that are used in equation of motion to get next set of displacements (x1 and Z1).
Thus, the response is used to evaluate stiffnesses which in turn give the next set of
response. To attain a steady state, the iterative procedure is repeated till the response set
for one full rotation is converged. The tolerance for convergence of response in the present
case is taken to be of the order of 0�1%. Initial transients in the response die within the first
few rotor rotations. Steady state solution is obtained after that.
At each solution step, the SIF values at all the 50 locations along the edges of both the

cracks are evaluated. Using the sign of these SIF values the crack closure line position
(CCLP) is found. The CCLP essentially separates the open and closed area of the crack.
The CCLP for both the cracks is stored during each solution step. This helps in
understanding the breathing behaviour of the two cracks as the position of the line shows
how the cracks close and open. The significance of CCLP is shown in Figure 3. The crack
edge is shown as A–B whereas the crack closure line (CCL) denoted by a bold vertical line
perpendicular to the crack edge is also shown. The position of CCL keeps changing along
the crack edge (say from 1 to 50 while opening from A to B and from 50 to 100 while
closing from A to B) as the rotor rotates. When the rotor is at initial position (Figure 3(a)),
the crack edge is on the compression region and is closed completely under the action of
gravity. As the rotor starts rotating counterclockwise, part of the crack near end ‘‘A’’
opens up. Thus at any position say y ¼ 458; the CCL could be at point 15 along the crack
edge (Figure 3(b)). When the rotor rotates further and when the crack edge is vertical at
y ¼ 908; the CCL could be at position 25 along the crack edge (Figure 3(c)) and so on. The
crack edge opens fully when it comes on the lower side in the tensile region at around
y ¼ 1808 (Figure 3(e)). At this position, the CCL has travelled from one corner A to the
other corner B passing through 50 various points along the crack edge and the CCL
position keeps changing from 0 to 50. When the rotor rotates further the corner A starts to
close and the CCL position changes from 50 towards 100 as the crack begins to further
close from corner A to B (Figures 3(f)–3(h)) till the crack completely closes at around
y ¼ 3608: Thus the CCL position of 1 and 100 indicates a fully closed state, whereas CCLP
of 50 indicates a fully open crack state. CCLP of 25 indicates half open-half closed
condition and CCLP of 75 indicates half closed-half open state of crack. Thus the CCL
position is indicative of the breathing of the crack.

3. ROTOR WITH TWO BREATHING CRACKS

To validate the two-crack model developed in section 2, a simulation involving two
cracks with %aa1 ¼ 0�04 and %aa2 ¼ 0�005 is considered. The angle between them is assumed to
be g ¼ 08: This is to compare the unbalance response of the two-crack rotor with similar
response of a cracked rotor with a single transverse crack of depth %aa ¼ 0�4 presented in
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reference [10]. The depth ratio of %aa2 ¼ 0�005 is not expected to change the response of the
two-crack rotor while at the same time it will allow the validation of the new model. The
unbalance eccentricity and the rotational speed considered are e ¼ 0�1 and runb ¼ 0�5
respectively. Unless otherwise stated, the unbalance orientation angle b is assumed to be 08
in all the simulations of this paper.
The results obtained by the two-crack rotor model are presented in Figure 4. Figure 4(a)

shows variation of the direct stiffness ratios (kx=k0 and kZ=k0) whereas Figure 4(b) shows
variation of cross-coupled stiffness ratio (kZ=k0). Similarly Figures 4(c) and 4(d) show the
unbalance response in rotor fixed and stationary co-ordinate systems respectively. These
results are in accordance with the results presented in reference [11]. The direct stiffness
ratios kx=k0 indicating stiffness variation in the x direction varies between 0�9084 and 1
whereas similar ratio in the Z direction (kZ=k0) varies between 0�9595 and 1. Both the
stiffness values drop to their minimum near y ¼ 1808; where the crack usually opens fully.
The cross-coupled stiffness is however zero near y ¼ 1808 and maximum near y ¼ 908 and
2708 when the crack is half-closed–half-open. The response in Figure 4(d) clearly shows
predominant 2x harmonic component in both horizontal and vertical directions. This is
due to the fact that the rotational speed is equal to 1/2 the bending critical speed
corresponding to the uncracked rotor.
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Figures 4(e) and 4(f) show crack closure line position (CCLP) for cracks 1 and 2 as the
two-crack rotor completes one resolution. The CCLP is explained in Figure 3. Figure 4(e)
shows that the crack 1 opens immediately and gradually keeps opening up until it opens
completely near y ¼ 1608: From y ¼ 1808 onwards it starts closing again and it closes
completely just before y ¼ 3608: However for crack 2 (Figure 4(f)) which is a very shallow
crack, the crack remains closed for a considerable period (till y ¼ 908) after which it starts
opening rather quickly and opens completely at y ¼ 1208: It stays open for a considerable
time before it starts closing again at 2708 and closes very quickly. This is in contrast to the
breathing of crack 1, which shows a more gradual opening and closing. This also indicates
that the sudden open (at y ¼ 908) and sudden close (at y ¼ 2708) mechanism suggested by
Grabowski [14] indeed is seen here for crack 2. However this applies for very shallow
cracks and cannot be generalized to all the crack depths. Similarly, from Figure 4(a) it may
be noted that the stiffness variation is not actually sinusoidal for the cracked rotor as
suggested by Mayes and Davis [15]. However it is still a reasonable approximation.
Next, the effect of one crack with a reasonable depth on a similar crack located at an

angle g with respect to the first one is studied. The rotor speed considered is runb ¼ 0�1 and
two equal cracks with %aa1 ¼ %aa2 ¼ 0�2 are considered. The results of the simulation are
shown in Figure 5 with g ¼ 08 (Figure 5(I)) and g ¼ 458 Figure 5(II)). Figures 5(a) and 5(b)
show direct and cross-coupled stiffness variation for one cycle of rotation for g ¼ 08: The
direct stiffness kx drops to minimum value near y ¼ 1358 from kx=k0 ¼ 1 to 0�9645
whereas the other direct stiffness kZ drops from kZ=k0 ¼ 1 to 0�9944. The cross-coupled
stiffness is also to have a maximum value near y ¼ 2708 and a minimum at y ¼ 908 while
the stiffness is zero at y ¼ 1808: Figures 5(c) and 5(d) shows the time domain response in
vertical and horizontal directions. The substantial dip in the rotor response near y ¼ 1808
is clearly seen in Figure 5(c) which is related to the fully opened crack in the range of
y ¼ 13522258 under the influence of gravity. From Figures 5(e) and 5(f) it may be noted
that both the cracks start to open at about y ¼ 408 and open fully near y ¼ 1358: Both the
cracks start to close again as shown by the CCLP changing from position 50 to 100 after
y ¼ 2258: This breathing of both the cracks is synchronous which is expected because they
are aligned. When the orientation of crack 2 is changed from g ¼ 0 to 458 with respect to
crack 1, the effect on the stiffness variation is evident. In the case of g ¼ 458; the overall
stiffness drop in the x direction is reduced with corresponding increase in the drop of
stiffness in the Z direction (Figure 5(g)), as compared with the case of the two cracks
aligned together (Figure 5(a)). The cross-coupled stiffness also shows an increase in the
change of stiffness value for g ¼ 458: The effect of these stiffness changes is seen on the
response shown in Figures 5(c), 5(d), 5(i) and 5( j). Although there is no significant
qualitative changes in the vertical and horizontal response from g ¼ 0 and 458, the peak
response shows a certain drop in the amplitudes (Figures 5(i) and 5( j)). Both these cracks,
when they are aligned, open and close at identical position, which is quite obvious (Figures
5(e) and 5(f). However, when the orientation changes to g ¼ 458; crack 2 opens in advance
compared to crack 1 because of the counterclockwise rotation of the rotor (Figures 5(k)
and 5(l)). This is in fact effecting the typical stiffness variation shown in Figures 5(g) and
5(h). The simulation results presented here in Figure 5 show noticeable effect of the
orientation of the two cracks on the response and stiffness variation pattern of the two-
crack rotor.
When the orientation angle of the crack 2 is increased from g ¼ 45 to 908, there

are substantial changes observed in stiffness variation as well as the response
(Figures 6(a)–6(f)). With g ¼ 908; the drop in stiffness in both x and Z directions is by
equal amount (Figure 5(a)) which is expected because of the fact that the two equal cracks
are perpendicular to each other. The peak response level in both directions has dropped by
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almost 50% (Figures 5(c) and 5(d)). The response pattern is also changed when compared
with the response at g ¼ 08: The crack opening and closing shows an interesting variation.
When the rotor starts turning from y ¼ 08; crack 1 starts to open at y ¼ 408 and fully
opens at y ¼ 1508 (Figure 6(e)). It then starts closing at y ¼ 2258 and fully closes near
y ¼ 3158:Whereas crack 2, which is at g ¼ 908 with respect to crack 1, is already half-open
at y ¼ 08 (Figure 6(f)) and continues to open till it opens fully at y ¼ 458; remains open till
y ¼ 1358 and then starts to close. It closes completely at y ¼ 2258 and starts to open again
at y ¼ 3158: When open–close pattern of both the cracks is considered, it may be noted
(from the CCLP in Figures 6(e) and 6(f)) that when one crack is fully closed or fully open
the other is partially open. This has a definite effect on the response of the two-crack rotor
that is discussed with the help of frequency domain and orbit plots in the following
paragraphs. But before that an interesting case of g ¼ 1808 is considered. When g ¼ 1808;
the two cracks are opposite to each other in their orientation on the rotor. Effectively this
causes a strong asymmetry in the rotor stiffness. This is evident in Figure 6(g), wherein the
two direct stiffness ratio variations show negligible variation about their mean values. In
fact the stiffness ratio variation is a straight line if shown in the same limits as in Figure
6(a). This strong asymmetry shows its effect in the lateral rotor vibration response as
shown in Figures 6(i) and 6(j). The response shows a very strong 2nd harmonic component
in both the directions (y and z). The stiffness asymmetry of the rotor is also indicated in
Figures 6(k) and 6(l), wherein if crack 1 is closed fully at y53158 and at y4458; the crack
2 is open fully in this range. Similarly when one crack starts to close from fully open state,
the other crack starts to open from fully closed state and vice versa. This maintains the
overall stiffness in the two directions nearly constant leading to the condition of a slotted
rotor.
The interaction between two cracks oriented at an angle with respect to each other has

been shown to effect the stiffness variation and also the response in the foregoing
discussions. The effect on the response is now discussed with the help of frequency domain
signals and the orbit plots. Figures 7(I), 7(II) and 7(III) show the response with g ¼ 0; 90
and 1808 respectively. When g ¼ 08; the vertical rotor response (Figure 7(c)) shows first,
second and third harmonics of rotational frequency (4�27Hz) in decreasing levels of
amplitudes. In the horizontal vibration spectrum (Figure 7(d)) the first two harmonics are
equal and the third harmonic is relatively weak. The orbit shape in this case is onion
shaped (Figure 7(e)). When g ¼ 908; frequency composition of the response dramatically
changes. Now both the vertical (Figure 7(h)) and horizontal (Figure 7(i)) vibration spectra
show only first and third harmonic components without any second harmonic component.
The first harmonic is twice as strong in vertical direction than in the horizontal direction
whereas the third harmonic is much stronger in the horizontal direction than in the vertical
direction. The orbit is slightly changed here (Figure 7(j)); being symmetric about both y

and z directions and reduced considerably in size. When g ¼ 1808; again there are dramatic
changes in the spectra. In this case the strong stiffness asymmetry shows up in the form of
predominant 2x component with almost negligible 1x and no trace of third harmonic in
both the vertical and horizontal spectra (Figures 7(m) and 7(n)). Obviously, the orbit plot
is a double looped orbit here (Figure 7(o)).
The simulation is repeated at a higher speed of runb ¼ 0�5: The response in time and

frequency domain for the three cases of g (0, 90, 1808) is shown in Figure 8. It may be
noted that the response changes substantially when g is changed from 0 to 908. The strong
second harmonic component of vibration earlier seen in the case of g ¼ 08 almost
disappears and the double looped orbit reduces to an oblong orbit (Figure 8( j)). This is
because in the case of g ¼ 908; the overall stiffness variation in both directions is dominant
as seen from the frequency domain signal (Figures 8(h) and 8(i)). However, the response is
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similar for g ¼ 0 and 1808. When the simulation is repeated for even higher speed of
runb ¼ 0�8; it is found that the response does not change in any way when the orientation of
a crack is changed with respect to the other. This is due to the fact that at such a high
speed close to critical speed, the response due to flexibility dominates the overall unbalance
response and the stiffness asymmetry or the stiffness variation plays a very little role. It
should be emphasized that the crack effect in the form of higher harmonics is more clearly
observed at a lower speed than at a higher speed.
The effect of unbalance orientation angle (b) relative to the crack 1 on the response of

the two-crack rotor is also studied. To investigate the influence of b; the response of the
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two-crack rotor is obtained by varying the value of b from 0 to 3608 in step of 908. The
speed of rotor for these simulations is kept as 1/2 of the first bending critical speed. The
effect of b is shown in Figure 9 in which the response variation with b is shown for three
different crack orientation angles (g), namely 0, 90 and 1808. Noticeable variation for all
the three cases of g is observed. The variation of orbit shape with b for g ¼ 08 obtained
here (Figure 9(a)) is similar to that presented in reference [11] for the case of single crack.
The variation of orbit shape with b is similar for g ¼ 0 and 1808. For both these cases the
frequency pattern (the spectra not shown here) did not show any significant changes.
However when the unbalance is opposite to the crack (b ¼ 1808), the amplitude of the first
harmonic reduces and the two loops of the orbit plot are almost of the same size. This is in
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%aa2 ¼ 0�2; runb ¼ 0�5: (a) g ¼ 08: (b) g ¼ 908: (c) g ¼ 1808:

DYNAMICS OF A TWO-CRACK ROTOR 667
contrast to the case of b ¼ 08 where the outer loop is a little larger than the inner loop. The
relative sizes of inner and outer loops are similar for b ¼ 90 and 2708. The second
harmonic component in all the four cases of b is not affected by the value of b: For
g ¼ 908; the first harmonic component substantially reduces for b ¼ 180 and 2708, since
for these values the unbalance is effectively in opposite phase to the crack. Thus the orbit
plot in this case (Figure 9(c)) can be seen as reduced in size. However it may be noted that
for each value of b; the effect of crack orientation angle g on the response of the two-crack
rotor that is discussed earlier in the section is seen to be similar in nature.

4. ROTOR WITH ONE OPEN AND ONE BREATHING CRACK

A special case of the two-crack rotor is an asymmetric rotor with a single breathing
transverse crack at an orientation g: This is like one of the two cracks is constrained to
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remain always open and the other crack breathe and change its stiffness as the rotor
rotates. The program written for the two-crack rotor is modified so that crack 1 is always
open and thus represents the constant stiffness asymmetry of an asymmetric rotor in rotor
fixed co-ordinates. The other crack, crack 2 is allowed to breathe and it may represent a
transverse crack in an asymmetric rotor. Such cracks are often found in two pole generator
rotors and are known to occur at the roots of winding slots due to stress concentrations
and thermal gradients due to electrical windings. It would be interesting to study the
effect of the presence of such a transverse surface crack on the dynamics of an asymmetric
rotor.
Before the effect of a crack on an asymmetric rotor is studied, the authors have found

the response of an asymmetric rotor (without any crack) using a program that is separately
developed. This is expected to help in understanding the additional effect the crack would
bring about in the already existing inherent stiffness asymmetry of the asymmetric rotor.
Figure 9(I) shows the response of an asymmetric rotor at runb ¼ 0�1 with an asymmetry
corresponding to a crack of depth %aa ¼ 0�2: The time domain (Figures 9(a) and 9(b)) and
the frequency domain (Figures 9(c) and 9(d)) responses as expected show a very dominant
second harmonic vibration component to an extent that the first harmonic component is
almost absent. This is because the speed being very low, the effect of unbalance is
negligible compared to the effect of stiffness asymmetry. The stiffness in rotating co-
ordinates being constant in case of an asymmetric rotor, the stiffness ratio is a straight line
if Figure 9(e). The orbit plot here is a double loop orbit with both loops being almost of
the same size.
Next, a breathing crack is introduced in addition to the constant asymmetry of the

asymmetric rotor. Figure 9(II) shows the response of an asymmetric rotor with a
transverse crack at an orientation of g ¼ 08: The time domain response (Figures 9(g) and
9(h)) shows a noticeable change. The frequency domain signal (Figures 9(i) and 9(j))
clearly shows a drop in 2x vibration component and a substantial increase in 1x vibration
component in addition to the traces of higher harmonics (3x) typical of the presence of a
crack. The stiffness ratio kx=k0 drops from a value of 0�9819 corresponding to the constant
stiffness of the asymmetric rotor to a value of 0�9645 due to an increased flexibility owing
to the present of the crack. This drop takes place when the crack opens fully
(y ¼ 135822258). Such a drop in flexibility during a part of the rotation leads to a
typical orbit as shown in Figure 9(l). Though the orbit has a loop inside similar to the one
in the case of asymmetric shaft in Figure 9(f), the difference is quite clear. The inner loop is
quite small and together with the larger outer lobe, the orbit takes this shape because of
the increased 1x component due to additional flexibility due to the crack. The effect of the
additional presence of the crack is thus very clearly seen in the frequency domain and in
the orbit plot of the response.
When the orientation of the crack from the direction of asymmetry is changed from

g ¼ 0 to 458, the effect is seen in the orbit plot more prominently than in the other format.
Although the frequency spectra and time domain signals show no qualitative changes from
the earlier case of g ¼ 08; the orbit plot (Figure 9(r)) shows a clear shift in the orbit
orientation. Due to an increased orientation angle the drop in stiffness ratio (Figure 9(q))
is increased for kZ=k0 and decreased for kx=k0: When the orientation of crack is further
increased to g ¼ 908; the marked drop in the degree of asymmetry compared to previous
cases of g is observed in the time domain, (Figures 10(a) and 10(b)) and frequency domain
(Figures 10(c) and 10(d)) signals. The time domain signal shows a strong qualitative
change. The strong 2x harmonic component in time domain signal is quite suppressed
here. This is also evident from the orbit plot (Figure 10(f)) that shows a complete
disappearance of the inner loop that is such a strong feature of an asymmetric rotor at
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low speeds. Instead a small protrusion type outer lobe is seen in the orbit plot. Dominating
1x component of vibration due to flexibility of the crack reduces the effect of asymmetry
due to the asymmetric rotor. The stiffness variation in Figure 10(e) shows that the stiffness
ratio kx=k0 does not change much. This is due to the fact that the constant asymmetry is in
the direction of x1 and the additional flexibility induced in x1 direction due to the crack in
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x22Z2 co-ordinate is very small, x1 being the ‘‘strong’’ crack direction of crack 2. However,
the rotor’s stiffness in Z1 direction in the early part of the rotation is already reduced due
to the orientation of the crack in the Z1 direction (the x2 direction for crack 2 is same as the
Z1 direction for crack 1 in this case). The direct stiffness in ‘‘weak’’ crack direction x2 now
contributes to the stiffness of the rotor in the Z1 direction, thereby reducing the stiffness of
the rotor in the early part of the rotor rotation (y ¼ 4521608).
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When the orientation angle is further increased to g ¼ 1358; the response is similar to the
case where g ¼ 458: However, here the orbit plot shows the orbit changed to opposite
orientation compared to the case of g ¼ 458: The change in the orbit orientation here
clearly emphasizes the need to use plot as none of the time domain or frequency domain
plots showed any significant changes in the response.
The case of g ¼ 1808 is considered next (Figure 10(III)). Here the time domain and

frequency domain signals (Figures 10(m)–10(p)) show an expected rise in the second
harmonic vibration component. The stiffness ratio variation (Figure 10(q)) shows an
important reversal of pattern. Here since the crack is oriented opposite to the direction of
asymmetry, for y ¼ 08; the crack is fully open as it is located on the lower side of the rotor
in the tensile region. Hence it may be noted that the kx=k0 ratio is lowest at y ¼ 08 and it
remains so till the crack on the lower part of the rotor starts to close near y ¼ 808; as the
rotor continues to rotate counterclockwise. Near y ¼ 1358; the crack closes and the rotor
assumes the stiffness corresponding to the inherent asymmetry in the rotor. Similarly, the
orbit shape and orientation of the inner loop in each case of the crack orientation angle g
considered so far does indicate the possible orientation of the crack relative to the
direction of asymmetry.
From the foregoing discussions it is established that the presence of a crack in an

asymmetric rotor does bring about definite changes in the response of the uncracked
asymmetric rotor. The frequency domain response coupled with the orbit plots does
provide important information regarding the presence as well as orientation of the crack
with respect to the direction of the asymmetry in the rotor.
It is shown in the previous section that the unbalance orientation angle does influence

the response of the two-crack rotor. Similar simulations are also repeated here in the case
of an asymmetric rotor with a fatigue crack in order to understand if the results of the
previous simulations in this section are valid irrespective of the unbalance orientation
angle (b). Figure 12 shows the orbit plot for four different values of b for an asymmetric
rotor with a fatigue crack oriented at an angle of 1808. The orbit plot slightly changes
orientation of its inner loop for b ¼ 90 and 2708, for which the inner loop gets pulled in the
direction of the unbalance. The changes in the orbit plot are not very substantial and can
be explained by the fact that the speed of the rotor is of a low order (1/10th of the first
bending critical speed). Thus at such a low speed the effect of unbalance orientation can be
expected to be marginal. However, the simulations are carried out to study the effect of a
different unbalance orientation angle (b ¼ 908) than the one previously considered
(b ¼ 08) on the orbit plot changes due to different crack orientation angle (g). Figures 13
and 14 show the response of an asymmetric rotor without and with the crack at different
orientations with the direction of asymmetry of unbalance orientation angle of b ¼ 908:
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Comparing these results with those presented in Figures 10 and 11 for b ¼ 08; it is quite
clear that the unbalance orientation angle only slightly alters the response. The frequency
composition and the amplitudes of these frequencies in both the cases of b are also
comparable. It can thus be concluded that the phase of unbalance relative to the crack
only slightly modifies the response variation with g: The presence of crack in an
asymmetric rotor can still be identified from the changes in the orbit plot irrespective of
the phase of the unbalance. The unbalance phase does not play a very dominant role at
such a slow speed.
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5. CONCLUSIONS

The stiffness of a two-crack Jeffcott rotor is derived from the concepts of fracture
mechanics. The cracks are assumed to breathe as the rotor rotates. Breathing behaviour of
both the cracks could be studied in detail due to the complex non-linear model used in the
study. When the orientation of one crack relative to the other is varied, the breathing
behaviour of the cracks changes leading to the changes in the stiffness variation that
ultimately affects the response pattern of the cracked rotor. The effect of the orientation of
the crack on the response is more strongly observed at lower speeds. At very high speeds
close to the critical speed, this effect is not observed. The change in response could be
observed in frequency domain and orbit plots. The salient features of the response of the
two-crack rotor are as follows:

1. If the two cracks are aligned, the frequency response contains first three harmonics of
rotational speed. If one of the cracks is oriented perpendicular to the first one, the
second harmonic component vanishes from the spectrum. When the two cracks are in
opposite phase, the third harmonic component is absent and the second harmonic
component of vibration becomes very dominant.

2. The orbit plot shows significant changes. From the onion shape for g ¼ 08; the orbit
changes to an oblong shape for g ¼ 908 and then to a double looped orbit for g ¼ 1808:
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3. For higher speeds near half the uncracked shaft critical speed, the changes are seen
more prominently at g ¼ 908; where the second harmonic component of the spectrum
almost vanishes, and the orbit plot does not show the characteristic inner loop which is
other wise shown at this period.

4. The unbalance orientation angle (b) has shown its influence on the orbit plot in the case
of a two-crack rotor. The nature of this influence is dependent on crack orientation
angle (g). When b is varied, the orientation of the orbit alters without significant change
in its shape if g ¼ 90 or 1808, whereas the orbit shape alters slightly if g ¼ 908: However
the influence of b is particularly noticeable at higher speeds (runb ¼ 0�5).

The presence of a breathing crack in an asymmetric rotor brings about some distinctive
changes in the frequency spectrum and orbit plots of the response. The salient features of
the response of an asymmetric rotor with a breathing crack are as follows:

1. The presence of a breathing crack in an asymmetric rotor adds higher harmonics in the
spectrum in addition to a dominant first harmonic component. Without any crack, an
asymmetric rotor exhibits very large second harmonic component and a negligible first
harmonic at lower speeds.

2. The orbit plot changes could be either change in the orientation of the inner loop, its
relative size or the complete disappearance of this inner loop depending upon the
orientation of this crack with respect to the direction of the original asymmetry.

3. The effect of the phase of unbalance with respect to the direction of asymmetry is
shown to be marginal, particularly at slower operating speeds (runb ¼ 0�1). Even for a
different unbalance phase (b ¼ 908), the orbit plot changes were found to be similar to
those obtained for b ¼ 08:

These changes could be useful in diagnosing fatigue crack in asymmetric rotors. This
vibration-based diagnostic strategy has an advantage that it can be applied without
bringing the rotor to a halt and taking the rotor out of service.
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APPENDIX A: NOMENCLATURE

x12Z1 co-ordinate system for crack 1
x22Z2 co-ordinate system for crack 2
g angle made by crack 2 relative to crack 1
a1; a2 depth of cracks 1 and 2 respectively
D diameter of the shaft
%aa1; %aa2 crack depth ratio (a=D) for cracks 1 and 2 respectively
L length of the shaft
m mass of the disc
c damping constant
z damping factor
e eccentricity of mass of disc from its geometric center
dst static deflection of the uncracked rotor
e dimensionless eccentricity (e=dst)
b orientation of centre of mass from x1 axis in the direction of shaft rotation
y angle of rotation of shaft
y; z rotor center displacement in vertical and horizontal direction respectively
x1; Z1 rotor center displacement in the direction perpendicular to crack edge and in the

direction parallel to crack edge of crack 1 respectively
x2; Z2 rotor center displacement in the direction perpendicular to crack edge and in the

direction parallel to crack edge of crack 2 respectively
k0 uncracked rotor stiffness
kx; kZ direct stiffness of the shaft in x1 and Z1 direction respectively
kxZ; kZx cross-coupled stiffnesses
o rotational speed in rad/s
t time in seconds
gx; gZ flexibility in x1 and Z1 directions respectively
gxZ; gZx cross-coupled flexibilities
Qx1 ;QZ1 forces acting on the shaft at cross-section of crack 1 in x1 and Z1 directions

respectively
Qx2 ;QZ2 forces acting on the shaft at cross-section of crack 1 in x2 and Z2 directions

respectively
KI
1 ;K

I
2 total stress intensity factor at any point along the crack edge of cracks 1 and 2

respectively
KI

Qx1
;KI

QZ1
stress intensity factor due to forces Qx1 and QZ1 respectively
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